Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578735

RESUMO

Iris is a cosmopolitan genus comprising approximately 280 species distributed throughout the Northern Hemisphere. Although Iris is the most diverse group in the Iridaceae, the number of taxa is debatable owing to various taxonomic issues. Plastid genomes have been widely used for phylogenetic research in plants; however, only limited number of plastid DNA markers are available for phylogenetic study of the Iris. To understand the genomic features of plastids within the genus, including its structural and genetic variation, we newly sequenced and analyzed the complete plastid genome of I. orchioides and compared it with those of 19 other Iris taxa. Potential plastid markers for phylogenetic research were identified by computing the sequence divergence and phylogenetic informativeness. We then tested the utility of the markers with the phylogenies inferred from the markers and whole-plastome data. The average size of the plastid genome was 152,926 bp, and the overall genomic content and organization were nearly identical among the 20 Iris taxa, except for minor variations in the inverted repeats. We identified 10 highly informative regions (matK, ndhF, rpoC2, ycf1, ycf2, rps15-ycf, rpoB-trnC, petA-psbJ, ndhG-ndhI and psbK-trnQ) and inferred a phylogeny from each region individually, as well as from their concatenated data. Remarkably, the phylogeny reconstructed from the concatenated data comprising three selected regions (rpoC2, ycf1 and ycf2) exhibited the highest congruence with the phylogeny derived from the entire plastome dataset. The result suggests that this subset of data could serve as a viable alternative to the complete plastome data, especially for molecular diagnoses among closely related Iris taxa, and at a lower cost.


Assuntos
Genomas de Plastídeos , Iris (Planta) , Iris (Planta)/genética , Filogenia , Genômica , Plastídeos/genética , Evolução Molecular
2.
Ecotoxicol Environ Saf ; 273: 116157, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430578

RESUMO

Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.


Assuntos
Iris (Planta) , Micorrizas , Micorrizas/metabolismo , Cromo/metabolismo , Iris (Planta)/genética , Plantas , Bactérias , Solo/química , Nitrogênio/metabolismo , Raízes de Plantas , Fungos
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339051

RESUMO

The role of bHLH transcription factors in plant response to abiotic stress and regulation of flavonoid metabolism is well documented. However, to date, the bHLH transcription factor family in Iris domestica remains unreported, impeding further research on flavonoid metabolism in this plant. To address this knowledge gap, we employed bioinformatics to identify 39 IdbHLH genes and characterised their phylogenetic relationships and gene expression patterns under both drought and copper stress conditions. Our evolutionary tree analysis classified the 39 IdbHLHs into 17 subfamilies. Expression pattern analysis revealed that different IdbHLH transcription factors had distinct expression trends in various organs, suggesting that they might be involved in diverse biological processes. We found that IdbHLH36 was highly expressed in all organs (Transcripts Per Million (TPM) > 10), while only 12 IdbHLH genes in the rhizome and four in the root were significantly upregulated under drought stress. Of these, four genes (IdbHLH05, -37, -38, -39) were co-upregulated in both the rhizome and root, indicating their potential role in drought resistance. With regards to copper stress, we found that only 12 genes were upregulated. Further co-expression analysis revealed that most bHLH genes were significantly correlated with key enzyme genes involved in isoflavone biosynthesis. Thereinto, IdbHLH06 showed a significant positive correlation with IdC4H1 and Id4CL1 (p < 0.05). Furthermore, a transient expression assay confirmed that the IdbHLH06 protein was localised in the nucleus. Our findings provide new insights into the molecular basis and regulatory mechanisms of bHLH transcription factors in isoflavone biosynthesis in I. domestica.


Assuntos
Iris (Planta) , Isoflavonas , Transcriptoma , Cobre/metabolismo , Iris (Planta)/genética , Filogenia , Secas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Fisiológico/genética , Flavonoides , Regulação da Expressão Gênica de Plantas
4.
BMC Plant Biol ; 23(1): 633, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066415

RESUMO

BACKGROUND: Flower color plays a crucial role in attracting pollinators and facilitating environmental adaptation. Investigating the causes of flower color polymorphism and understanding their potential effects on both ecology and genetics can enhance our understanding of flower color polymorphism in wild plant. RESULTS: In this study, we examined the differences of potential male and female fitness between purple- and yellow- flower individuals in Iris potaninii on the Qinghai-Tibet Plateau, and screened key genes and positively selective genes involved in flower color change. Our results showed that yellow flower exhibited a higher pollen-to-ovule ratio. Yellow flowers were derived from purple flowers due to the loss of anthocyanins, and F3H could be an essential gene affecting flower color variation though expression regulation and sequence polymorphism in this species. Furthermore, our findings suggest that genes positively selected in yellow-flowered I. potaninii might be involved in nucleotide excision repair and plant-pathogen interactions. CONCLUSIONS: These results suggest that F3H induces the flower color variation of Iris potaninii, and the subsequent ecological and additive positive selection on yellow flowers may further enhance plant adaptations to alpine environments.


Assuntos
Iris (Planta) , Humanos , Iris (Planta)/genética , Iris (Planta)/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Tibet , Polimorfismo Genético , Flores/genética , Flores/metabolismo , Cor , Pigmentação/genética
5.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003365

RESUMO

Drought and high salinity greatly affect plant growth and development. WRKY transcription factors play a key role in plant tolerance to abiotic stress, but the functions of WRKYs in the ornamental monocotyledon Iris laevigata remain largely unexplored. In this study, we cloned IlWRKY70 and found that it is a Group III WRKY localized in the nucleus. The expression of IlWRKY70 was induced by NaCl and PEG-6000, which reached peaks (4.38 and 5.65 times) after 3 h and 1 h, respectively. The exogenous overexpression of IlWRKY70 in N. tabacum significantly improved the resistance under NaCl and drought treatments, as evidenced by higher germination rates, longer root lengths, and increased fresh weights compared to those of control plants. In addition, transgenic seedlings showed significantly reduced wilting, higher photosynthetic performance, higher Fv/Fm and chlorophyll content, and lower stomatal conductance. Moreover, transgenic lines showed higher antioxidant enzymatic activities, lower reactive oxygen species (ROS), and lower malondialdehyde contents. Accordingly, we also found higher expressions of antioxidant defense genes, including SOD, CAT, and POD, in transgenic lines compared to controls under salt and drought stresses. Thus, IlWRKY70 enhances the abilities of salt and drought tolerances in plants, at least partially, via ROS regulation and can be used for breeding I. laevigata possessing enhanced salt and drought resistances.


Assuntos
Iris (Planta) , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Iris (Planta)/genética , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Cloreto de Sódio/farmacologia , Secas , Tolerância ao Sal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estresse Fisiológico/genética
6.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003651

RESUMO

The anthocyanin biosynthetic pathway is the main pathway regulating floral coloration in Iris germanica, a well-known ornamental plant. We investigated the transcriptome profiles and targeted metabolites to elucidate the relationship between genes and metabolites in anthocyanin biosynthesis in the bitone flower cultivar 'Clarence', which has a deep blue outer perianth and nearly white inner perianth. In this study, delphinidin-, pelargonidin-, and cyanidin-based anthocyanins were detected in the flowers. The content of delphinidin-based anthocyanins increased with the development of the flower. At full bloom (stage 3), delphinidin-based anthocyanins accounted for most of the total anthocyanin metabolites, whereas the content of pelargonidin- and cyanidin-based anthocyanins was relatively low. Based on functional annotations, a number of novel genes in the anthocyanin pathway were identified, which included early biosynthetic genes IgCHS, IgCHI, and IgF3H and late biosynthetic genes Ig F3'5'H, IgANS, and IgDFR. The expression of key structural genes encoding enzymes, such as IgF3H, Ig F3'5'H, IgANS, and IgDFR, was significantly upregulated in the outer perianth compared to the inner perianth. In addition, most structural genes exhibited their highest expression at the half-color stage rather than at the full-bloom stage, which indicates that these genes function ahead of anthocyanins synthesis. Moreover, transcription factors (TFs) of plant R2R3-myeloblastosis (R2R3-MYB) related to the regulation of anthocyanin biosynthesis were identified. Among 56 R2R3-MYB genes, 2 members belonged to subgroup 4, with them regulating the expression of late biosynthetic genes in the anthocyanin biosynthetic pathway, and 4 members belonged to subgroup 7, with them regulating the expression of early biosynthetic genes in the anthocyanin biosynthetic pathway. Quantitative real-time PCR (qRT-PCR) analysis was used to validate the data of RNA sequencing (RNA-Seq). The relative expression profiles of most candidate genes were consistent with the FPKM of RNA-seq. This study identified the key structural genes encoding enzymes and TFs that affect anthocyanin biosynthesis, which provides a basis and reference for the regulation of plant anthocyanin biosynthesis in I. germanica.


Assuntos
Iris (Planta) , Transcriptoma , Antocianinas , Iris (Planta)/genética , Iris (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Int J Biol Macromol ; 253(Pt 4): 127103, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769763

RESUMO

Iris lactea is potentially applied for remediating Cd-contaminated soils due to the strong ability of Cd uptake and accumulation. However, its molecular mechanism underlying Cd uptake pathway remains unknown. Here, we report a member of NRAMP (Natural Resistance-Associated Macrophage Protein) family, IlNRAMP5, is involved in Cd/Mn uptake and the growth in I. lactea response to Cd. IlNRAMP5 was localized onto the plasma membrane, and was induced by Cd. It was expressed in the root cortex rather than the central vasculature, and in leaf vascular bundle and mesophyll cells. Heterologous expression in yeast showed that IlNRAMP5 could transport Cd and Mn, but not Fe. Knockdown of IlNRAMP5 triggered a significant reduction in Cd uptake, further diminishing the accumulation of Cd. In addition, silencing IlNRAMP5 disrupted Mn homeostasis by lowering Mn uptake and Mn allocation, accompanied by remarkably inhibiting photosynthesis under Cd conditions. Overall, the findings suggest that IlNRAMP5 plays versatile roles in Cd accumulation by mediating Cd uptake, and contributes to maintain the growth via modulating Mn homeostasis in I. lactea under Cd exposures. This would provide a mechanistic understanding Cd phytoremediation efficiency in planta.


Assuntos
Cádmio , Iris (Planta) , Cádmio/toxicidade , Cádmio/metabolismo , Iris (Planta)/genética , Iris (Planta)/metabolismo , Transporte Biológico , Homeostase , Saccharomyces cerevisiae/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
Virus Res ; 334: 199141, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355176

RESUMO

Lily plants (Lilium lancifolium Thunb.) exhibiting dwarfing and foliar chlorosis with mosaic or mottle disease symptoms were found in Anhui Province, China. We used high-throughput sequencing of small RNA to survey the virus in the lily cultivation region of Anhui Province. Here, we report the identification and complete genome sequence of the viral agent. It contains 9733 nucleotides, excluding the poly(A) tail, and encodes a polyprotein of 3063 amino acids. The complete polyprotein ORF shows 98.92% amino acid sequence identity with that of iris potyvirus A (GenBank MH898493). Phylogenetic analysis of coat protein sequences placed the viral agent close to members of the genus Potyvirus in the family Potyviridae, and it was therefore provisionally named iris potyvirus A isolate Anhui (IrPVA-Anhui). This is the first complete genome sequence of IrPVA-Anhui from lily plant, for which only a partial sequence from Iris domestica has been reported previously. Comparative analysis of this genome sequence with those of closely related potyviruses identified nine cleavage sites and the conserved motifs typical of potyviruses. Subsequent virus identification was performed using serological assays (ELISA and antibody-based lateral flow assays), molecular methods (RT-PCR), and a pathogenicity test. Virus particles with a length of about 700 nm, similar to viruses in the genus Potyvirus, were observed via transmission electron microscope (TEM). We back-inoculated healthy plants of multiple species to investigate the host range of the virus. It infected the original host, Iris domestica, and Nicotiana benthamiana but not Triticum aestivum, Pisum sativum, Chenopodium amaranticolor, or Datura stramonium. This is the first report of natural IrPVA-Anhui infection of lily plants in China, providing a scientific basis for IrPVA-Anhui control in future lily plantings.


Assuntos
Iris (Planta) , Lilium , Potyvirus , Lilium/genética , Filogenia , Iris (Planta)/genética , Genoma Viral , RNA Viral/genética , China , Poliproteínas/genética
9.
BMC Plant Biol ; 23(1): 17, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617566

RESUMO

BACKGROUND: Iris lactea var. chinensis, a perennial herbaceous species, is widely distributed and has good drought tolerance traits. However, there is little information in public databases concerning this herb, so it is difficult to understand the mechanism underlying its drought tolerance. RESULTS: In this study, we used Illumina sequencing technology to conduct an RNA sequencing (RNA-seq) analysis of I. lactea var. chinensis plants under water-stressed conditions and rehydration to explore the potential mechanisms involved in plant drought tolerance. The resulting de novo assembled transcriptome revealed 126,979 unigenes, of which 44,247 were successfully annotated. Among these, 1187 differentially expressed genes (DEGs) were identified from a comparison of the water-stressed treatment and the control (CK) treatment (T/CK); there were 481 upregulated genes and 706 downregulated genes. Additionally, 275 DEGs were identified in the comparison of the rehydration treatment and the water-stressed treatment (R/T). Based on Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) analysis, the expression levels of eight randomly selected unigenes were consistent with the transcriptomic data under water-stressed and rehydration treatment, as well as in the CK. According to Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, proline metabolism-related DEGs, including those involved in the 'proline catabolic process', the 'proline metabolic process', and 'arginine and proline metabolism', may play important roles in plant drought tolerance. Additionally, these DEGs encoded 43 transcription factors (TFs), 46 transporters, and 22 reactive oxygen species (ROS)-scavenging system-related proteins. Biochemical analysis and histochemical detection showed that proline and ROS were accumulated under water-stressed conditions, which is consistent with the result of the transcriptomic analysis. CONCLUSIONS: In summary, our transcriptomic data revealed that the drought tolerance of I. lactea var. chinensis depends on proline metabolism, the action of TFs and transporters, and a strong ROS-scavenging system. The related genes found in this study could help us understand the mechanisms underlying the drought tolerance of I. lactea var. chinensis.


Assuntos
Iris (Planta) , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Iris (Planta)/genética , Iris (Planta)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Transcriptoma , Perfilação da Expressão Gênica , Desidratação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Secas
10.
Biomed Res Int ; 2023: 7407772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714023

RESUMO

Iris bulleyana Dykes (Southwest iris) is an extensively distributed Iridaceae species with blue or white flowers. Hereby, we performed a systematic study, employing metabolomics and transcriptomics to uncover the subtle color differentiation from blue to white in Southwest iris. Fresh flower buds from both cultivars were subjected to flavonoid/anthocyanin and carotenoid-targeted metabolomics along with transcriptomic sequencing. Among 297 flavonoids, 24 anthocyanins were identified, and 13 showed a strong down-accumulation pattern in the white flowers compared to the blue flowers. Significant downregulation of 3GT and 5GT genes involved in the glycosylation of anthocyanins was predicted to hinder the accumulation of anthocyanins, resulting in white coloration. Besides, no significant altered accumulation of carotenoids and expression of their biosynthetic genes was observed between the two cultivars. Our study systematically addressed the color differentiation in I. bulleyana flowers, which can aid future breeding programs.


Assuntos
Iris (Planta) , Iris (Planta)/genética , Iris (Planta)/metabolismo , Antocianinas/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flavonoides/metabolismo , Carotenoides/metabolismo , Flores/genética , Flores/metabolismo , Cor , Pigmentação/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética
11.
PeerJ ; 10: e13761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275471

RESUMO

We describe six new species of rainfrogs of the genus Pristimantis (Strabomantidae) from Amazonian cloud forests in Ecuador. We also present a phylogeny showing the relationships of the new species. The phylogeny is based on mitochondrial genes 16S rRNA (16S), 12 rRNA (12S), NADH-ubiquinone oxidoreductase chain 1 (ND1) and the nuclear gene recombination-activating 1 (RAG1). We also describe the osteology of two of the new species using high-resolution x-ray computed tomography. The new species belong to two clades. The first clade is sister to the subgenus Huicundomantis and includes P. tamia sp. nov., P. miktos, and P. mallii. Pristimantis tamia sp. nov. is morphologically similar to P. miktos, P. mallii, P. martiae, and P. incomptus, but differs from them by lacking vocal slits and tympanic membrane and by having light greenish blue iris. Based in our results we expand the subgenus Huicundomantis to include the P. miktos species group. The second clade is remarkable by being highly divergent and consisting exclusively of new species: P. anaiae sp. nov., P. glendae sp. nov., P. kunam sp. nov., P. resistencia sp. nov., and P. venegasi sp. nov. The new species resemble P. roni, P. yanezi, P. llanganati, P. katoptroides, P. verecundus, and P. mutabilis but can be distinguished from them by lacking vocal slits and tympanic membrane and by having large dark round areas with thin clear borders in the sacral region. All six new species occur in the eastern slopes of the Ecuadorian Andes and are known from a single locality in Llanganates or Sangay National Park. We recommend assigning all of them to the Data Deficient (DD) Red List category. Based in our high-resolution x-ray tomographies, we report the presence of structures that appear to be intercalary elements. This would be the first report of such structures in Terrarana.


Assuntos
Anuros , Iris (Planta) , Animais , Equador , Anuros/anatomia & histologia , Parques Recreativos , RNA Ribossômico 16S , Distribuição Animal , Florestas , Iris (Planta)/genética , Sciuridae/genética
12.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232426

RESUMO

Winter dormancy is a protective survival strategy for plants to resist harsh natural environments. In the context of global warming, the progression of dormancy has been significantly affected in perennials, which requires further research. Here, a systematic study was performed to compare the induction of dormancy in two closely related iris species with an ecodormancy-only process, the evergreen Iris japonica Thunb. and the deciduous Iris tectorum Maxim. under artificial conditions. Firstly, morphological and physiological observations were evaluated to ensure the developmental status of the two iris species. Furthermore, the expression patterns of the genes involved in key pathways related to plant winter dormancy were determined, and correlation analyses with dormancy marker genes were conducted. We found that deciduous iris entered dormancy earlier than evergreen iris under artificial dormancy induction conditions. Phytohormones and carbohydrates play roles in coordinating growth and stress responses during dormancy induction in both iris species. Moreover, dormancy-related MADS-box genes and SnRKs (Snf1-related protein kinase) might represent a bridge between carbohydrate and phytohormone interaction during iris dormancy. These findings provide a hypothetical model explaining the later dormancy in evergreen iris compared with deciduous iris under artificial dormancy induction conditions and reveal some candidate genes. The findings of this study could provide new insights into the research of dormancy in perennial plants with an ecodormancy-only process and contribute to effectively managing iris production, postharvest storage, and shipping.


Assuntos
Iris (Planta) , Reguladores de Crescimento de Plantas , Carboidratos , Congelamento , Iris (Planta)/genética , Dormência de Plantas/fisiologia , Estações do Ano
13.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142840

RESUMO

The Iris series Chinenses in Korea comprises four species (I. minutoaurea, I. odaesanensis, I. koreana, and I. rossii), and the group includes some endangered species, owing to their high ornamental, economic, and conservation values. Among them, the putative allotetraploid, Iris koreana (2n = 4x = 50), is hypothesized to have originated from the hybridization of the diploids I. minutoaurea (2n = 2x = 22) and I. odaesanensis (2n = 2x = 28) based on morphological characters, chromosome numbers, and genome size additivity. Despite extensive morphological and molecular phylogenetical studies on the genus Iris, little is known about Korean irises in terms of their complete chloroplast (cp) genomes and molecular cytogenetics that involve rDNA loci evolution based on fluorescence in situ hybridization (FISH). This study reports comparative analyses of the karyotypes of the three Iris species (I. koreana, I. odaesanensis, and I. minutoaurea), with an emphasis on the 5S and 35S rDNA loci number and localization using FISH together with the genome size and chromosome number. Moreover, the cp genomes of the same individuals were sequenced and assembled for comparative analysis. The rDNA loci numbers, which were localized consistently at the same position in all species, and the chromosome numbers and genome size values of tetraploid Iris koreana (four 5S and 35S loci; 2n = 50; 1C = 7.35 pg) were additively compared to its putative diploid progenitors, I. minutoaurea (two 5S and 35S loci; 2n = 22; 1C = 3.71 pg) and I. odaesanensis (two 5S and 35S loci; 2n = 28; 1C = 3.68 pg). The chloroplast genomes were 152,259-155,145 bp in length, and exhibited a conserved quadripartite structure. The Iris cp genomes were highly conserved and similar to other Iridaceae cp genomes. Nucleotide diversity analysis indicated that all three species had similar levels of genetic variation, but the cp genomes of I. koreana and I. minutoaurea were more similar to each other than to I. odaesanensis. Positive selection was inferred for psbK and ycf2 genes of the three Iris species. Phylogenetic analyses consistently recovered I. odaesanensis as a sister to a clade containing I. koreana and I. minutoaurea. Although the phylogenetic relationship, rDNA loci number, and localization, together with the genome size and chromosome number of the three species, allowed for the inference of I. minutoaurea as a putative maternal taxon and I. odaesanensis as a paternal taxon, further analyses involving species-specific molecular cytogenetic markers and genomic in situ hybridization are required to interpret the mechanisms involved in the origin of the chromosomal variation in Iris series Chinenses. This study contributes towards the genomic and chromosomal evolution of the genus Iris.


Assuntos
Genoma de Cloroplastos , Iridaceae , Iris (Planta) , DNA Ribossômico/genética , Diploide , Hibridização in Situ Fluorescente , Iris (Planta)/genética , Cariótipo , Nucleotídeos , Filogenia
14.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077350

RESUMO

Iris laevigata is ideal for gardening and landscaping in northeast China because of its beautiful flowers and strong cold resistance. However, the short length of flowering time (2 days for individual flowers) greatly limits its applications. Molecular breeding and engineering hold high potential for producing I. laevigata of desirable flowering properties. A prerequisite is to identify and characterize key flowering control genes, the identity of which remains largely unknown in I. laevigata due to the lack of genome information. To fill this knowledge gap, we used sequencing data of the I. laevigata transcriptome to identify MADS-box gene-encoding transcription factors that have been shown to play key roles in developmental processes, including flowering. Our data revealed 41 putative MADS-box genes, which consisted of 8 type I (5 Mα and 3 Mß, respectively) and 33 type II members (2 MIKC* and 31 MIKCC, respectively). We then selected IlSEP3 and IlSVP for functional studies and found that both are localized to the nucleus and that they interact physically in vitro. Ectopic expression of IlSEP3 in Arabidopsis resulted in early flowering (32 days) compared to that of control plants (36 days), which could be mediated by modulating the expression of FT, SOC1, AP1, SVP, SPL3, VRN1, and GA20OX. By contrast, plants overexpressing IlSVP were phenotypically similar to that of wild type. Our functional validation of IlSEP3 was consistent with the notion that SEP3 promotes flowering in multiple plant species and indicated that IlSEP3 regulates flowering in I. laevigata. Taken together, this work provided a systematic identification of MADS-box genes in I. laevigata and demonstrated that the flowering time of I. laevigata can be genetically controlled by altering the expression of key MADS-box genes.


Assuntos
Arabidopsis , Iris (Planta) , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Iris (Planta)/genética , Iris (Planta)/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Biol (Stuttg) ; 24(6): 1066-1075, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35779251

RESUMO

Breeding for flower cold resistance is a priority for flower breeding research in northern China. The identification of cold resistance genes will not only provide genetic resources for cold resistance breeding, but also form a basis for the study of plant cold resistance mechanisms. Based on the flower transcriptome of Iris laevigata, 20 R2R3-MYBs were identified and comprehensive analysis, including conservative domain, phylogenetic analyses and functional distribution, were performed for R2R3-MYBs. Expression patterns of the abiotic stress genes under cold stress were detected, the upregulated gene was genetically transformed into tobacco, and the related physiological indicators of the transgenic tobacco were measured. A novel cold resistance gene, IlMYB306, was obtained. qRT-PCR indicated that IlMYB306 was dramatically induced by cold stress and was significantly upregulated in roots. The free proline content, MDA, SOD and POD activity of the transgenic tobacco improved after cold stress, and the chlorophyll content decreased slowly. In addition, overexpression of IlMYB306 improved cold resistance of the seeds. SEM results showed leaves of transgenic tobacco had obvious folds, more grooves and bulges on the lower leaf surface. Overall, we report a novel cold resistance R2R3-MYB gene, IlMYB306, in the flower of I. laevigata, which could improve tobacco cold stress tolerance by thickening the waxy layer, increasing antioxidant activity and the content of proline.


Assuntos
Iris (Planta) , Antioxidantes/metabolismo , Clorofila/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes myb , Iris (Planta)/genética , Iris (Planta)/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Sci Rep ; 12(1): 9424, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676304

RESUMO

Iris ruthenica Ker Gawl. and I. uniflora Pall. ex Link, which are rare and endangered species in Korea, possess considerable horticultural and medicinal value among Korean irises. However, discrimination of the species is hindered by extensive morphological similarity. Thus, the aim of the present study was to identify discriminating features by comparing the species' complete plastid genome (i.e., plastome) sequences and micromorphological features, including leaf margins, stomatal complex distribution (hypostomatic vs. amphistomatic leaves), anther stomata density, and tepal epidermal cell patterns. Plastome comparison revealed slightly divergent regions within intergenic spacer regions, and the most variable sequences, which were distributed in non-coding regions, could be used as molecular markers for the discrimination of I. ruthenica and I. uniflora. Phylogenetic analysis of the Iris species revealed that I. ruthenica and I. uniflora formed a well-supported clade. The comparison of plastomes and micromorphological features performed in this study provides useful information for elucidating taxonomic, phylogenetic, and evolutionary relationships in Iridaceae. Further studies, including those based on molecular cytogenetic approaches using species specific markers, will offer insights into species delimitation of the two closely related Iris species.


Assuntos
Genomas de Plastídeos , Iridaceae , Iris (Planta) , Iris (Planta)/genética , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética
17.
J Plant Res ; 135(2): 351-360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35157159

RESUMO

The circadian clock can entrain to forced light-dark cycles by adjusting the phases and periods of flower opening and closing in ephemeral flowers. The responses of circadian rhythms to the same light conditions differ from species. However, the differences in internal genetic mechanisms underlying the different responses between species remain unclear. Iris domestica and I. dichotoma have ephemeral flowers and significantly divergent flower opening and closing times. The effects of different photoperiods (continuous darkness, 4L20D, 8L16D, 12L12D, 16L8D, 20L4D and continuous white light) on flower opening and closing, and expression patterns of seven genes (CRYPTOCHROME 1, PHYTOCHROME B, LATE ELONGATED HYPOCOTYL, PSEUDO RESPONSE REGULATOR 95, PHYTOCHROME INTERACTING FACTOR 4-like, SMUX AUXIN UP RNA 64-like and senescence-associated gene 39-like) involved in the circadian regulation of flower opening and closing were compared between I. domestica and I. dichotoma. Flower opening and closing in the two species exhibited circadian rhythms under continuous darkness (DD), but showed arrhythmia in continuous white light (LL). In the two species, keeping robust rhythms, strong synchronicity, rapid progressions of flower opening and closing and reaching full opening stage required a dark period longer than 4 h. In light-dark cycles with dark periods longer than 4 h, flower opening and closing times of the two species delayed with the delay of dawn, and the degree to which flower opening time varies with the time of dawn was greater in I. dichotoma than in I. domestica. The arrhythmia of flower opening and closing under 20L4D and LL would result from the arrhythmic output signals rather than arrhythmia of oscillators and photoreceptors. The different responses of the two species to the change of photoperiods would be caused by the transcriptional differences of genes in the output pathway of circadian clock system rather than in the input pathway or oscillators.


Assuntos
Relógios Circadianos , Iris (Planta) , Relógios Circadianos/genética , Ritmo Circadiano/genética , Escuridão , Flores/genética , Iris (Planta)/genética , Luz , Fotoperíodo
18.
J Exp Bot ; 73(5): 1429-1449, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752617

RESUMO

Winter dormancy (WD) is a crucial strategy for plants coping with potentially deadly environments. In recent decades, this process has been extensively studied in economically important perennial eudicots due to changing climate. However, in evergreen monocots with no chilling requirements, dormancy processes are so far a mystery. In this study, we compared the WD process in closely related evergreen (Iris japonica) and deciduous (I. tectorum) iris species across crucial developmental time points. Both iris species exhibit a 'temporary' WD process with distinct durations, and could easily resume growth under warm conditions. To decipher transcriptional changes, full-length sequencing for evergreen iris and short read RNA sequencing for deciduous iris were applied to generate respective reference transcriptomes. Combining results from a multipronged approach, SHORT VEGETATIVE PHASE and FRUITFULL (FUL) from MADS-box was associated with a dormancy- and a growth-related module, respectively. They were co-expressed with genes involved in phytohormone signaling, carbohydrate metabolism, and environmental adaptation. Also, gene expression patterns and physiological changes in the above pathways highlighted potential abscisic acid and jasmonic acid antagonism in coordinating growth and stress responses, whereas differences in carbohydrate metabolism and reactive oxygen species scavenging might lead to species-specific WD durations. Moreover, a detailed analysis of MIKCCMADS-box in irises revealed common features described in eudicots as well as possible new roles for monocots during temporary WD, such as FLOWERING LOCUS C and FUL. In essence, our results not only provide a portrait of temporary WD in perennial monocots but also offer new insights into the regulatory mechanism underlying WD in plants.


Assuntos
Iris (Planta) , Proteínas de Domínio MADS , Flores , Regulação da Expressão Gênica de Plantas , Iris (Planta)/genética , Iris (Planta)/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
19.
Am J Bot ; 108(11): 2257-2268, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34618352

RESUMO

PREMISE: When divergent lineages come into secondary contact, reproductive isolation may be incomplete, thus providing an opportunity to investigate how speciation is manifested in the genome. The Louisiana Irises (Iris, series Hexagonae) comprise a group of three or more ecologically and reproductively divergent lineages that can produce hybrids where they come into contact. We estimated standing genetic variation to understand the current distribution of population structure in the Louisiana Irises. METHODS: We used genotyping-by-sequencing techniques to sample the genomes of Louisiana Iris species across their ranges. We sampled 20 populations (n = 632 individuals) across 11,249 loci and used Entropy and PCA models to assess population genetic data. RESULTS: We discovered evidence for interspecific gene flow in parts of the range. Our analysis revealed patterns of population structure at odds with widely accepted nominal taxonomy. We discovered undescribed hybrid populations, designated as belonging to the I. brevicaulis lineage. Iris nelsonii shared significant ancestry with only one of the purported parent species, I. fulva, evidence inconsistent with a hybrid origin. CONCLUSIONS: This study provides several key findings important to the investigation of standing genetic variation in the Louisiana Iris species complex. Compared to the other nominal species, I. brevicaulis contains a large amount of genetic diversity. In addition, we discovered a previously unknown hybrid zone between I. brevicaulis and I. hexagona along the Texas coast. Finally, our results do not support the long-standing hypothesis that I. nelsonii has mixed ancestry from three parental taxa.


Assuntos
Iris (Planta) , Especiação Genética , Estruturas Genéticas , Hibridização Genética , Iris (Planta)/genética , Louisiana , Isolamento Reprodutivo , Texas
20.
J Environ Manage ; 300: 113703, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509818

RESUMO

Wetland plants play a major role in the process of wastewater treatment in constructed wetlands (CWs). The inhibitory effect of salt stress on plants may reduce the performance of CWs. In this study, salicylic acid (SA) and/or calcium ion (Ca2+) were used for root pretreatment to alleviate the salt stress in Iris pseudacorus L. The results showed that root pretreatment with SA and/or Ca2+ improved the response of Iris pseudacorus L. to salinity by increasing growth, photosynthetic pigments, Pro content, enzymes activities and K+ content. In addition, SA and/or Ca2+ application in saline conditions decreased the relative conductivity and content of malondialdehyde. RNA-seq analysis showed the expression of hormone signaling genes, potassium ion transporter genes, oxidative stress genes and photosynthesis genes were up-regulated after pretreating with SA and CaCl2. In conclusion, the addition of SA and Ca2+ could improve the saline wastewater treatment efficiency of CWs by enhancing the salt tolerance of Iris pseudacorus L.


Assuntos
Iris (Planta) , Áreas Alagadas , Cloreto de Cálcio , Iris (Planta)/genética , Ácido Salicílico/farmacologia , Tolerância ao Sal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...